Finanzmärkte SS 2010

Übungsblatt 6

Themen:

- Varianz/Standardabweichung eines Portfolios mit *n* Aktien
- Diversifikationseffekt
- Ableitung der Struktur des Minimum-Varianz Portfolios (MVP)
- Efficient set (effiziente Grenze)

Array-Funktionen in Excel:

- "Array" ist das englische Wort für Matrix und wird in der Informatik als solches benützt
- Wenn eine Excel-Funktion ein Array zurückliefern soll müssen wir folgenderweise vorgehen (unsere Matrizen sind 2x2 in den Zellen A1:B2 und D1:E2; das Ergebnis möchten wir in G1:H2 bekommen)
 - 1. die Funktion in der ersten Zelle (G1) des Arrays eingeben: =mmult(A1:B2,D1:E2)
 - 2. die Region des Ergebnis-Arrays selektieren (G1:H2)
 - 3. Die Taste F2 drücken
 - 4. CTRL+SHIFT+ENTER drücken

Umbennenung von Zellbezügen:

- Um unsere Arbeit zu erleichtern könnten wir die Zellbezüge (z.B. A1:B2 aus dem obigen Beispiel) umbenennen (z.B. A) mit Hilfe von Insert->Name->Define
- Diese Namen könnten dann in den Funktionen angegeben werden (z.B. =mmult(A,B))

Excel-Funktionen:

- MMULT(array1,array2) Multiplikation zweier Matrizen
- MINVERSE(array) Inverse eine Matrix
- Solver Add-In

Aufgaben:

1. Angenommen, auf einem Markt gibt es nur 3 Aktien mit den folgenden Renditen und Standardabweichungen. Der Investor bildet daraus ein Portfolio mit den folgenden Gewichten. Berechnet die Rendite und die Standardabweichung dieses Portfolios!

Aktie	Rendite (%)	Standardabweichung (%)	Gewicht der Aktie in dem
			Portfolio (%)
A	8	15	40
В	10	22	30
С	12	25	30

Die Korrelationskoeffizienten sind:

	A	В	С
A	1	0,5	0,4

В	1	0,3
C		1

- 2. Angenommen, auf dem Markt gibt es N Aktien deren Renditen alle dieselbe Standardabweichung σ=0,03 erweisen. Zusätzlich ist die Kovarianz zwischen jedwelchen zwei Renditen 0,0006. Berechnet die Standardabweichung eines gleichgewichteten Portfolios das aus den N Aktien besteht für N=2, 4, 8, 12, 20. Stellt es graphisch dar (N auf der Ox Achse und die Standardabweichung des Portfolios auf der Oy Achse).
- 3. Angenommen, auf einem Markt gibt es nur 2 Aktien mit den Renditen und Standardabweichungen \overline{R}_A =0.15, \overline{R}_B =0.25, σ_A =0.1, σ_B =0.2. Der Korrelationskoeffizient der beiden Renditen ist 0.35. Berechnet die Gewichte der beiden Aktien in dem Minimum-Varianz Portfolio (Portfolio mit dem kleinsten Risiko, i.e. Varianz-Standardabweichung ist minimal).
- 4. Angenommen, auf einem Markt gibt es nur 2 Aktien mit den Renditen und Standardabweichungen \overline{R}_A =0.15, \overline{R}_B =0.25, σ_A =0.1, σ_B =0.2. Der Korrelationskoeffizienten der Renditen der beiden Aktien ist 0.5. Der Investor bildet 10 Portfolios in denen die Aktie A das Gewicht 10%, 20%, 30%, hat. Macht eine graphische Darstellung dieser Portfolios. Die Ox Achse ist die Standardabweichung und die Oy die erwartete Rendite.
- 5. Benützt den Markt mit 3 Aktien aus Aufgabe 1. Berechnet die Gewichte der 3 Aktien für effiziente Portfolios mit den erwarteten Renditen 8%, 9%, 10%, 11%. Benützt dafür den Solver-AddIn. Nimmt auch die Möglichkeit von "short sales" (Leerverkaufe in Betracht) in Betracht.